Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712993

RESUMO

Magnetic skyrmions are topologically protected, nanoscale whirls of the spin configuration that tend to form hexagonally ordered arrays. As a topologically non-trivial structure, the nucleation and annihilation of the skyrmion, as well as the interaction between skyrmions, varies from conventional magnetic systems. Recent works have suggested that the ordering kinetics in these materials occur over millisecond or longer timescales, which is unusually slow for magnetic dynamics. The current work investigates the skyrmion ordering kinetics, particularly during lattice formation and destruction, using time-resolved small angle neutron scattering (TR-SANS). Evaluating the time-resolved structure and intensity of the neutron diffraction pattern reveals the evolving real-space structure of the skyrmion lattice and the timeframe of the formation. Measurements were performed on three prototypical skyrmion materials: MnSi, (Fe,Co)Si, and Cu2OSeO3. To probe lattice formation and destruction kinetics, the systems were prepared in the stable skyrmion state, and then a square-wave magnetic field modulation was applied. The measurements show that the skyrmions quickly form ordered domains, with a significant distribution in lattice parameters, which then converge to the final structure; the results confirm the slow kinetics, with formation times between 10 ms and 99 ms. Comparisons are made between the measured formation times and the fundamental material properties, suggesting the ordering temperature, saturation magnetization and magnetocrystalline anisotropy may be driving the timeframes. Micromagnetic simulations were also performed and support a scaling of the kinetics with sample volume, a behavior which is caused by the reconciling of misaligned domains.

2.
Nat Commun ; 15(1): 3378, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643147

RESUMO

Reentrant superconductivity is an uncommon phenomenon in which the destructive effects of magnetic field on superconductivity are mitigated, allowing a zero-resistance state to survive under conditions that would otherwise destroy it. Typically, the reentrant superconducting region derives from a zero-field parent superconducting phase. Here, we show that in UTe2 crystals extreme applied magnetic fields give rise to an unprecedented high-field superconductor that lacks a zero-field antecedent. This high-field orphan superconductivity exists at angles offset between 29o and 42o from the crystallographic b to c axes with applied fields between 37 T and 52 T. The stability of field-induced orphan superconductivity presented in this work defies both empirical precedent and theoretical explanation and demonstrates that high-field superconductivity can exist in an otherwise non-superconducting material.

3.
Phys Rev Lett ; 132(6): 066003, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38394590

RESUMO

Resonant ultrasound spectroscopy (RUS) is a powerful technique for measuring the full elastic tensor of a given material in a single experiment. Previously, this technique was practically limited to regularly shaped samples such as rectangular parallelepipeds, spheres, and cylinders [W. M. Visscher et al. J. Acoust. Soc. Am. 90, 2154 (1991)JASMAN0001-496610.1121/1.401643]. We demonstrate a new method for determining the elastic moduli of irregularly shaped samples, extending the applicability of RUS to a much larger set of materials. We apply this new approach to the recently discovered unconventional superconductor UTe_{2} and provide its elastic tensor at both 300 and 4 kelvin.

4.
Rep Prog Phys ; 86(11)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37729901

RESUMO

Uranium ditelluride (UTe2) is recognized as a host material to unconventional spin-triplet superconductivity, but it also exhibits a wealth of additional unusual behavior at high magnetic fields. One of the most prominent signatures of the unconventional superconductivity is a large and anisotropic upper critical field that exceeds the paramagnetic limit. This superconductivity survives to 35 T and is bounded by a discontinuous magnetic transition, which itself is also field-direction-dependent. A different, reentrant superconducting phase emerges only on the high-field side of the magnetic transition, in a range of angles between the crystallographicbandcaxes. This review discusses the current state of knowledge of these high-field phases, the high-field behavior of the heavy fermion normal state, and other phases that are stabilized by applied pressure.

5.
Nature ; 618(7967): 928-933, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37380690

RESUMO

The intense interest in triplet superconductivity partly stems from theoretical predictions of exotic excitations such as non-Abelian Majorana modes, chiral supercurrents and half-quantum vortices1-4. However, fundamentally new and unexpected states may emerge when triplet superconductivity appears in a strongly correlated system. Here we use scanning tunnelling microscopy to reveal an unusual charge-density-wave (CDW) order in the heavy-fermion triplet superconductor UTe2 (refs. 5-8). Our high-resolution maps reveal a multi-component incommensurate CDW whose intensity gets weaker with increasing field, with the CDW eventually disappearing at the superconducting critical field Hc2. To understand the phenomenology of this unusual CDW, we construct a Ginzburg-Landau theory for a uniform triplet superconductor coexisting with three triplet pair-density-wave states. This theory gives rise to daughter CDWs that would be sensitive to magnetic field owing to their origin in a pair-density-wave state and provides a possible explanation for our data. Our discovery of a CDW state that is sensitive to magnetic fields and strongly intertwined with superconductivity provides important information for understanding the order parameters of UTe2.

6.
Nature ; 618(7967): 921-927, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37380691

RESUMO

Spin-triplet topological superconductors should exhibit many unprecedented electronic properties, including fractionalized electronic states relevant to quantum information processing. Although UTe2 may embody such bulk topological superconductivity1-11, its superconductive order parameter Δ(k) remains unknown12. Many diverse forms for Δ(k) are physically possible12 in such heavy fermion materials13. Moreover, intertwined14,15 density waves of spin (SDW), charge (CDW) and pair (PDW) may interpose, with the latter exhibiting spatially modulating14,15 superconductive order parameter Δ(r), electron-pair density16-19 and pairing energy gap17,20-23. Hence, the newly discovered CDW state24 in UTe2 motivates the prospect that a PDW state may exist in this material24,25. To search for it, we visualize the pairing energy gap with µeV-scale energy resolution using superconductive scanning tunnelling microscopy (STM) tips26-31. We detect three PDWs, each with peak-to-peak gap modulations of around 10 µeV and at incommensurate wavevectors Pi=1,2,3 that are indistinguishable from the wavevectors Qi=1,2,3 of the prevenient24 CDW. Concurrent visualization of the UTe2 superconductive PDWs and the non-superconductive CDWs shows that every Pi:Qi pair exhibits a relative spatial phase δϕ ≈ π. From these observations, and given UTe2 as a spin-triplet superconductor12, this PDW state should be a spin-triplet PDW24,25. Although such states do exist32 in superfluid 3He, for superconductors, they are unprecedented.

7.
J Vis Exp ; (173)2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34309595

RESUMO

Single crystal specimens of the actinide compound uranium ditelluride, UTe2, are of great importance to the study and characterization of its dramatic unconventional superconductivity, believed to entail spin-triplet electron pairing. A variety in the superconducting properties of UTe2 reported in the literature indicates that discrepancies between synthesis methods yield crystals with different superconducting properties, including the absence of superconductivity entirely. This protocol describes a process to synthesize crystals that exhibit superconductivity via chemical vapor transport, which has consistently exhibited a superconducting critical temperature of 1.6 K and a double transition indicative of a multi-component order parameter. This is compared to a second protocol that is used to synthesize crystals via the molten metal flux growth technique, which produces samples that are not bulk superconductors. Differences in the crystal properties are revealed through a comparison of structural, chemical, and electronic property measurements, showing that the most dramatic disparity occurs in the low-temperature electrical resistance of the samples.


Assuntos
Urânio , Elétrons , Supercondutividade , Temperatura
8.
Nat Commun ; 12(1): 2644, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976162

RESUMO

Chiral superconductors have been proposed as one pathway to realize Majorana normal fluid at its boundary. However, the long-sought 2D and 3D chiral superconductors with edge and surface Majorana normal fluid are yet to be conclusively found. Here, we report evidence for a chiral spin-triplet pairing state of UTe2 with surface normal fluid response. The microwave surface impedance of the UTe2 crystal was measured and converted to complex conductivity, which is sensitive to both normal and superfluid responses. The anomalous residual normal fluid conductivity supports the presence of a significant normal fluid response. The superfluid conductivity follows the temperature behavior predicted for an axial spin-triplet state, which is further narrowed down to a chiral spin-triplet state with evidence of broken time-reversal symmetry. Further analysis excludes trivial origins for the observed normal fluid response. Our findings suggest that UTe2 can be a new platform to study exotic topological excitations in higher dimension.

9.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 1): 137-143, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32831248

RESUMO

The crystal structure of a new superconductor UTe2 has been investigated using single-crystal neutron diffraction for the first time at the low temperature (LT) of 2.7 K, just above the superconducting transition temperature of ∼1.6 K, in order to clarify whether the orthorhombic structure of type Immm (No. 71), reported for the room-temperature (RT) structure persists down to the superconducting phase and can be considered as a parent symmetry for the development of spin-triplet superconductivity. In contrast to the previously reported phase transition at about 100 K [Stöwe (1996). J. Solid State Chem. 127, 202-210], our high-precision LT neutron diffraction data show that the body-centred RT symmetry is indeed maintained down to 2.7 K. No sign of a structural change from RT down to 2.7 K was observed. The most significant change depending on temperature was observed for the U ion position and the U-U distance along the c direction, implying its potential importance as a magnetic interaction path. No magnetic order could be deduced from the neutron diffraction data refinement at 2.7 K, consistent with bulk magnetometry. Assuming normal thermal evolution of the lattice parameters, moderately large linear thermal expansion coefficients of about α = 2.8 (7) × 10-5 K-1 are estimated.

10.
Sci Adv ; 6(18): eaay9709, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32426474

RESUMO

Time-of-flight neutron data reveal spin waves in the ferromagnetic ground state of the kagome staircase material Co3V2O8. While previous work has treated this material as quasi-two-dimensional, we find that an inherently three-dimensional description is needed to describe the spin wave spectrum throughout reciprocal space. Moreover, spin wave branches show gaps that point to an unexpectedly large Dzyaloshinskii-Moriya interaction on the nearest-neighbor bond, with D 1 ≥ J 1/2. A better understanding of the Dzyaloshinskii-Moriya interaction in this material should shed light on the multiferroicity of the related Ni3V2O8. At a higher temperature where Co3V2O8 displays an antiferromagnetic spin density wave structure, there are no well-defined spin wave excitations, with most of the spectral weight observed in broad diffuse scattering centered at the (0, 0.5, 0) antiferromagnetic Bragg peak.

11.
Nature ; 579(7800): 523-527, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32214254

RESUMO

Spin-triplet superconductors are condensates of electron pairs with spin 1 and an odd-parity wavefunction1. An interesting manifestation of triplet pairing is the chiral p-wave state, which is topologically non-trivial and provides a natural platform for realizing Majorana edge modes2,3. However, triplet pairing is rare in solid-state systems and has not been unambiguously identified in any bulk compound so far. Given that pairing is usually mediated by ferromagnetic spin fluctuations, uranium-based heavy-fermion systems containing f-electron elements, which can harbour both strong correlations and magnetism, are considered ideal candidates for realizing spin-triplet superconductivity4. Here we present scanning tunnelling microscopy studies of the recently discovered heavy-fermion superconductor UTe2, which has a superconducting transition temperature of 1.6 kelvin5. We find signatures of coexisting Kondo effect and superconductivity that show competing spatial modulations within one unit cell. Scanning tunnelling spectroscopy at step edges reveals signatures of chiral in-gap states, which have been predicted to exist at the boundaries of topological superconductors. Combined with existing data that indicate triplet pairing in UTe2, the presence of chiral states suggests that UTe2 is a strong candidate for chiral-triplet topological superconductivity.

12.
Phys Rev Lett ; 124(7): 076401, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32142327

RESUMO

The compound UTe_{2} has recently been shown to realize spin triplet superconductivity from a nonmagnetic normal state. This has sparked intense research activity, including theoretical analyses that suggest the superconducting order parameter to be topologically nontrivial. However, the underlying electronic band structure is a critical factor for these analyses, and remains poorly understood. Here, we present high resolution angle-resolved photoemission measurements covering multiple planes in the 3D Brillouin zone of UTe_{2}, revealing distinct Fermi-level features from two orthogonal quasi-one-dimensional light electron bands and one heavy band. The electronic symmetries are evaluated in comparison with numerical simulations, and the resulting picture is discussed as a platform for unconventional many-body order.

13.
Phys Rev B ; 101(14)2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34131608

RESUMO

Spin triplet superconductivity in the Kondo lattice UTe2 appears to be associated with spin fluctuations originating from incipient ferromagnetic order. Here we show clear evidence of twofold enhancement of superconductivity under pressure, which discontinuously transitions to magnetic order, likely of ferromagnetic nature, at higher pressures. The application of a magnetic field tunes the system back across a first-order phase boundary. Straddling this phase boundary, we find another example of reentrant superconductivity in UTe2. As the superconductivity and magnetism exist on two opposite sides of the first-order phase boundary, our results indicate other microscopic mechanisms may be playing a role in stabilizing spin triplet superconductivity in addition to spin fluctuations associated with magnetism.

14.
Phys Rev B ; 102(13)2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37731841

RESUMO

Magnetic skyrmions have been the focus of intense research due to their unique qualities which result from their topological protections. Previous work on Cu2OSeO3, the only known insulating multiferroic skyrmion material, has shown that chemical substitution alters the skyrmion phase. We chemically substitute Zn, Ag, and S into powdered Cu2OSeO3 to study the effect on the magnetic phase diagram. In both the Ag and the S substitutions, we find that the skyrmion phase is stabilized over a larger temperature range, as determined via magnetometry and small-angle neutron scattering (SANS). Meanwhile, while previous magnetometry characterization suggests two high temperature skyrmion phases in the Zn-substituted sample, SANS reveals the high temperature phase to be skyrmionic while we are unable to distinguish the other from helical order. Overall, chemical substitution weakens helical and skyrmion order as inferred from neutron scattering of the q≈0.01Å-1 magnetic peak.

15.
Phys Rev X ; 10(3)2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37731951

RESUMO

A promising route to realize entangled magnetic states combines geometrical frustration with quantum-tunneling effects. Spin-ice materials are canonical examples of frustration, and Ising spins in a transverse magnetic field are the simplest many-body model of quantum tunneling. Here, we show that the tripod-kagome lattice material Ho3Mg2Sb3O14 unites an icelike magnetic degeneracy with quantum-tunneling terms generated by an intrinsic splitting of the Ho3+ ground-state doublet, which is further coupled to a nuclear spin bath. Using neutron scattering and thermodynamic experiments, we observe a symmetry-breaking transition at T*≈0.32K to a remarkable state with three peculiarities: a concurrent recovery of magnetic entropy associated with the strongly coupled electronic and nuclear degrees of freedom; a fragmentation of the spin into periodic and icelike components; and persistent inelastic magnetic excitations down to T≈0.12K. These observations deviate from expectations of classical spin fragmentation on a kagome lattice, but can be understood within a model of dipolar kagome ice under a homogeneous transverse magnetic field, which we survey with exact diagonalization on small clusters and mean-field calculations. In Ho3Mg2Sb3O14, hyperfine interactions dramatically alter the single-ion and collective properties, and suppress possible quantum correlations, rendering the fragmentation with predominantly single-ion quantum fluctuations. Our results highlight the crucial role played by hyperfine interactions in frustrated quantum magnets and motivate further investigations of the role of quantum fluctuations on partially ordered magnetic states.

16.
Sci Adv ; 5(10): eaaw9061, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31667341

RESUMO

Novel electronic phenomena frequently form in heavy-fermions because of the mutual localized and itinerant nature of f-electrons. On the magnetically ordered side of the heavy-fermion phase diagram, f-moments are expected to be localized and decoupled from the Fermi surface. It remains ambiguous whether Kondo lattice can develop inside the magnetically ordered phase. Using spectroscopic imaging with scanning tunneling microscope, complemented by neutron scattering, x-ray absorption spectroscopy, and dynamical mean field theory, we probe the electronic states in antiferromagnetic USb2. We visualize a large gap in the antiferromagnetic phase within which Kondo hybridization develops below ~80 K. Our calculations indicate the antiferromagnetism and Kondo lattice to reside predominantly on different f-orbitals, promoting orbital selectivity as a new conception into how these phenomena coexist in heavy-fermions. Finally, at 45 K, we find a novel first order-like transition through abrupt emergence of nontrivial 5f-electronic states that may resemble the "hidden-order" phase of URu2Si2.

17.
Science ; 365(6454): 684-687, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31416960

RESUMO

Spin-triplet superconductors potentially host topological excitations that are of interest for quantum information processing. We report the discovery of spin-triplet superconductivity in UTe2, featuring a transition temperature of 1.6 kelvin and a very large and anisotropic upper critical field exceeding 40 teslas. This superconducting phase stability suggests that UTe2 is related to ferromagnetic superconductors such as UGe2, URhGe, and UCoGe. However, the lack of magnetic order and the observation of quantum critical scaling place UTe2 at the paramagnetic end of this ferromagnetic superconductor series. A large intrinsic zero-temperature reservoir of ungapped fermions indicates a highly unconventional type of superconducting pairing.

18.
Nat Commun ; 10(1): 644, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30733441

RESUMO

Uranium compounds can manifest a wide range of fascinating many-body phenomena, and are often thought to be poised at a crossover between localized and itinerant regimes for 5f electrons. The antiferromagnetic dipnictide USb2 has been of recent interest due to the discovery of rich proximate phase diagrams and unusual quantum coherence phenomena. Here, linear-dichroic X-ray absorption and elastic neutron scattering are used to characterize electronic symmetries on uranium in USb2 and isostructural UBi2. Of these two materials, only USb2 is found to enable strong Hund's rule alignment of local magnetic degrees of freedom, and to undergo distinctive changes in local atomic multiplet symmetry across the magnetic phase transition. Theoretical analysis reveals that these and other anomalous properties of the material may be understood by attributing it as the first known high temperature realization of a singlet ground state magnet, in which magnetism occurs through a process that resembles exciton condensation.

19.
Nat Phys ; 15(12)2019.
Artigo em Inglês | MEDLINE | ID: mdl-34131432

RESUMO

Applied magnetic fields underlie exotic quantum states, such as the fractional quantum Hall effect1 and Bose-Einstein condensation of spin excitations2. Superconductivity, however, is inherently antagonistic towards magnetic fields. Only in rare cases3-5 can these effects be mitigated over limited fields, leading to re-entrant superconductivity. Here, we report the coexistence of multiple high-field re-entrant superconducting phases in the spin-triplet superconductor UTe2 (ref. 6). We observe superconductivity in the highest magnetic field range identified for any re-entrant superconductor, beyond 65 T. Although the stability of superconductivity in these high magnetic fields challenges current theoretical models, these extreme properties seem to reflect a new kind of exotic superconductivity rooted in magnetic fluctuations7 and boosted by a quantum dimensional crossover8.

20.
Phys Rev B ; 100(22)2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34136735

RESUMO

Low-temperature electrical and thermal transport, magnetic penetration depth, and heat capacity measurements were performed on single crystals of the actinide superconductor UTe2 to determine the structure of the superconducting energy gap. Heat transport measurements performed with currents directed along both crystallographic a and b axes reveal a vanishingly small residual fermionic component of the thermal conductivity. The magnetic field dependence of the residual term follows a rapid, quasilinear increase consistent with the presence of nodal quasiparticles, rising toward the a-axis upper critical field where the Wiedemann-Franz law is recovered. Together with a quadratic temperature dependence of the magnetic penetration depth up to T/T c = 0.3, these measurements provide evidence for an unconventional spin-triplet superconducting order parameter with point nodes. Millikelvin specific heat measurements performed on the same crystals used for thermal transport reveal an upturn below 300 mK that is well described by a divergent quantum-critical contribution to the density of states (DOS). Modeling this contribution with a T -1/3 power law allows restoration of the full entropy balance in the superconducting state and a resultant cubic power law for the electronic DOS below T c , consistent with the point-node gap structure determined by thermal conductivity and penetration depth measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...